
PRE-CONDITIONING AND CONTINUATION FOR
PARALLEL DISTRIBUTED MESH CURVING

Eloi Ruiz-Gironés Xevi Roca

Computer Applications in Science and Engineering, Barcelona Supercomputing Center - BSC,
08034 Barcelona, Spain. {eloi.ruizgirones,xevi.roca}@bsc.es

ABSTRACT

To generate large-scale meshes with highly stretched elements for complex geometries, we propose a distributed
parallel Newton-GMRES penalty solver. For each non-linear iteration, we solve a pre-conditioned sparse linear
problem. To choose the parallel pre-conditioner, we compare an algebraic multi-grid implementation with a restricted
additive Schwarz domain decomposition with one level of overlap and local problems approximated with symmetric
successive over-relaxation. We show that domain decomposition is faster and more energy efficient. Furthermore, to
accelerate the penalty based solver, we propose a novel p-continuation technique with two unique features. First, it
has an early termination criterion to stop the optimization of the initial polynomial degrees. Second, it estimates
the initial penalty parameter for each polynomial degree. We conclude that this continuation can reduce four times
(eight times) the wall clock time (energy per core) required to curve a whole boundary layer quartic mesh using the
chosen domain decomposition.

Keywords: High-order mesh curving, parallel, pre-conditioner, p-continuation

1. INTRODUCTION

Curved high-order meshes are required for unstruc-
tured high-order methods to keep their advantages
[1–5]. These advantages come in the form of geometric
flexibility, high accuracy, and low numerical dissipa-
tion and dispersion. High-order methods feature ex-
ponential convergence rates and therefore, they have
been proven to be faster than low-order methods in
several applications [6–14], especially in those prob-
lems where an implicit solver is required [15].

Usually, to generate a curved high-order mesh an a
posteriori approach is used [16–26]. First, a linear
mesh with elements of the desired shape and size is
generated, and then, the mesh boundary is curved
to match the target geometry. This step may intro-
duce low-quality and inverted elements that have to
be repaired using a high-order mesh curving technique.
There are several manners to formulate the mesh curv-
ing problem: PDE-based methods like solid mechanics
analogies [21, 24, 27–30] or the Winslow equation [25],

and optimization-based methods [23, 31–34]. How-
ever, none of these methods can run in a distributed
parallel environment while taking into account vir-
tual geometry to generate large curved high-order
meshes of complex domains, as we detail in Section
2. This capability, is critical to perform in parallel
unsteady (fine graded meshes) or steady state (fine
meshes with stretched elements) flow simulations for
large Reynolds numbers with unstructured high-order
methods.

To generate fine graded and stretched curved high-
order meshes in parallel, we parallelize a high-order
mesh curving formulation that takes into account vir-
tual geometry [35]. The previous method poses the
mesh curving problem as a constrained optimization
problem in which the mesh distortion is minimized
constrained to a non-linear boundary condition. This
non-linear constraint allows different types of bound-
ary conditions such as fixed boundary nodes, nodes
sliding on the geometry, and nodes sliding on top of

virtual entities. The constrained optimization is solved
using a penalty method in which the boundary condi-
tion is introduced into the objective function using a
penalty parameter. Then, several optimization prob-
lems are solved while increasing the penalty parameter
to enforce the boundary condition. he optimization
process is devised to favor that at each optimization
step, a valid mesh is deformed to a valid mesh. To
this end, two main ingredients have been considered.
The first one is a functional that penalizes inverted ele-
ments by taking an infinite value. The second ingredi-
ent is a backtracking line search to Newton’s method.
Thus, if a Newton full step were deforming a valid
mesh to an invalid mesh, leading to an infinite value
of the functional, the backtracking line-search would
decrease the step length until a valid mesh is obtained,
leading to a finite value.

To solve the large linear problems arising in the
global optimization of large curved high-order meshes,
we need a pre-conditioned distributed parallel lin-
ear solver. The pre-conditioner is required since fine
graded meshes with highly stretched elements hamper
the condition number of the linear systems. The dis-
tributed parallel linear solver allows accommodating
the large linear systems across the memory of differ-
ent machines.

To select the parallel pre-conditioner, we have to con-
sider the influence of the number of elements, element
stretching, and the number of cores used by the linear
solver. This consideration is so since when higher is
the number of elements and their stretching more ill-
conditioned is the linear system and thus, greater is
the number of linear iterations. Moreover, increasing
the number of cores might reduce the capacity of the
parallel pre-conditioner to propagate the information
across the mesh boundaries.

The first contribution of this work focuses on the se-
lection of pre-conditioners for the linear problems that
arise during the curving of high-order meshes. We con-
sider two pre-conditioners, and we compare the time
to solve the linear problems, the number of iterations
of the linear solvers, and the energy consumption to
generate the high-order curved mesh. As the method
uses more computational resources during more time,
the economic cost of generating the high-order mesh
also increases. Therefore, it is important to devise effi-
cient mesh curving methods in terms of computational
resources like time and memory. This consideration is
especially important when curving large-scale meshes
in supercomputers where the computational resources
are directly translated into energy consumption and
economic costs.

In the second contribution, we develop a p-
continuation technique to increase the robustness and
computational efficiency of the mesh curving process.

The main idea is to use the converged solution of a
given polynomial degree as the initial condition for
the next polynomial degree. Thus, the p-continuation
technique can be interpreted as a methodology to com-
pute the initial condition for the final polynomial de-
gree.

We propose two unique features in the p-continuation
technique to reduce the number of linear and non-
linear problems to solve, and to improve the robustness
of the optimization. The first novelty is to introduce
an early-termination criterion to finalize the optimiza-
tion of the initial polynomial degrees. Using this crite-
rion, we avoid solving additional non-linear problems,
and therefore, the use of computational resources is
reduced. The second novelty is to estimate the value
of the penalty parameter in the first iteration of each
polynomial degree. The value of the penalty parame-
ter is critical to converge the mesh curving process. If
the penalty parameter is too high, the linear problems
become more difficult, and the linear solver may not
be able to solve the linear problem.

The rest of the paper is structured as follows. Sec-
tion 2 reviews the literature related to the presented
work. Section 3 presents the formulation of the pro-
posed high order mesh curving methodology. Section
4 presents several examples to show the capabilities of
the proposed formulation. Finally, Section 5 details
the conclusions of this work.

2. RELATED WORK

Mesh curving methods can be divided into global and
local methods. Global methods move all the nodes
at the same time, while local methods move one node
at a time. Global methods can be further divided into
implicit methods that need to solve a sparse linear sys-
tem, and explicit methods that move the nodes using
an explicit formula. Note that herein, global (local)
methods do not refer to obtain the global (local) min-
imum of an objective function.

One of the main bottlenecks in global implicit meth-
ods is the solution of a sparse linear problem to re-
locate all the mesh nodes at the same time. There-
fore, efficient sparse linear solvers and pre-conditioners
are necessary to curve high-order meshes composed
of a large number of elements. In several works, the
linear systems are solved using sparse direct solvers
for morphing linear meshes [36], and curving high-
order meshes [29, 37]. Nevertheless, when the num-
ber of elements in the mesh increases, it is neces-
sary to use iterative solvers. In general, the linear
problems are solved either with MINRES, GMRES or
conjugated gradients [25, 34, 38–40]. To improve the
computational efficiency, the linear problems can be
pre-conditioned in different manners. For instance,

diagonal pre-conditioners [38], incomplete factoriza-
tions [25, 39], or especially designed pre-conditioners
for the mesh curving problem [41]. Global methods
need to assemble a sparse matrix and solve the associ-
ated linear problem. Therefore, the parallelization of
these methods need to assemble the matrix in paral-
lel and apply a parallel sparse iterative linear solver,
see [34,35,40].

To avoid solving a sparse linear system, reference [42]
relocates the nodes using a first order steepest descent
minimization method. That is, the method relocates
the nodes using a multiple of the objective function
gradient. Although the convergence rate is lower than
using Newton’s method, the iterations are performed
faster and the memory requirements are reduced.

Instead of solving a fully coupled linear problem to
move all the nodes at the same time, local approaches
move one node at a time. This approach is both ap-
plied for linear meshes [43, 44] and high-order meshes
[22,26,45]. Although the local approach uses less mem-
ory and each iteration is faster than in the global ap-
proach, the convergence rate to the optimal solution
can be hampered. In local approaches, nodes that
do not belong to the same element can be relocated
at the same time. Thus, several authors propose to
color the nodes of the mesh in such a manner that
nodes of the same color can be relocated at the same
time [26, 43, 44]. Moreover, in [44], they propose a
mesh partitioning method to ensure that the cost to
relocate the nodes in each sub-domain is roughly the
same.

In the proposed work, we propose a distributed mem-
ory implementation that moves all the nodes at the
same time. To accomplish this, we solve a sparse linear
system of equations derived from Newton’s method.
Therefore, we expect faster convergence rates than
first-order methods or local methods.

3. PARALLEL MESH CURVING SOLVER

We first briefly summarize the proposed mesh curving
solver and non-linear solver, as presented in [35], and
then introduce the new p-continuation technique to in-
crease the robustness and the efficiency of the method.

3.1 Mesh Curving Problem

Given an initial linear mesh, MI , we want to char-
acterize a curved high-order one, MP , in terms of a
diffeomorphism φ∗ [45, 46]. The optimal diffeomor-
phism presents optimal point-wise distortion, and sat-
isfies a prescribed boundary condition. That is, φ∗ is

the minimizer of

min
φ∈V

E(φ) = ‖Mφ‖2

subject to:

Tφ = gD(Tφ), (1)

where T is the trace operator, gD(Tφ) is a non-linear
Dirichlet boundary condition on ∂MI that depends
on the values of φ, and

Mφ(y) = η(Dφ(y)) =
‖Dφ(y)‖2

nσ0(Dφ(y))2/n

is a regularized point-wise distortion measure [23] de-
fined in terms of the shape distortion measure for lin-
ear simplices [47], where ‖·‖ is the Frobenius norm for
matrices, and

σ0 =
1

2
(σ + |σ|) , (2)

being σ(·) the determinant function. The regularized
distortion measure takes a value of infinity when the
determinant is negative or equal to zero, and takes
finite values when the determinant is positive.

The non-linear boundary condition allows integrating
a geometric model in the mesh curving process. In
this work, we define the boundary condition as

gD(Tφ) =

Nb∑
i=1

Π(xi)N
b
i , (3)

where xi are the coordinates of the mesh nodes, Nb is
the number of boundary nodes, {Nb}i=1,...,Nb is a La-
grangian basis of shape functions continuous between
adjacent boundary faces, and Π(·) is a geometric or-
thogonal projection onto the CAD model. The bound-
ary condition can be interpreted as in interpolation of
the geometric model, in which the interpolation points
are the projection of the boundary nodes. This bound-
ary condition is non-linear and depends on the orthog-
onal projection of the boundary nodes.

3.2 Mesh Curving Non-Linear Solver

To solve the constrained optimization problem in (1),
we use a penalty approach, see [48], in which we intro-
duce the boundary constraint into the objective func-
tion in a weak sense as follows

min
φ∈V

Eµ(φ) =
E(φ)

‖1‖2M
I

+ µ
‖Tφ− gD(Tφ)‖2∂M

I

‖1‖2∂M
I

, (4)

where µ is a penalty parameter that enforces the va-
lidity of the constraint when it tends to infinity. We
have introduced the measures of the initial mesh and
its boundary in order to balance the two contributions
of the new functional.

The main idea is to solve several unconstrained opti-
mization problems with increasing penalty parameter
in order to enforce the boundary condition. Never-
theless, the boundary condition depends on the actual
solution of the problem. Thus, we apply a fixed-point
iteration as

gkD = gD
(
Tφk

)
,

φk+1 = arg min
φ∈V

Eµ
(
φ;gkD

)
,

being k the k-th iteration of the proposed fixed-point
solver.

We optimize each non-linear problem of the pro-
posed penalty method using a backtracking line-search
method in which the advancing direction is computed
using Newton’s method and the step-length is set us-
ing the Armijo’s rule, see [48] for more details.

3.3 p-Continuation Technique

To improve the robustness of the proposed solver and
to compute an initial condition for the non-linear
solver, we propose to apply a p-continuation technique.
Instead of directly computing the optimal mesh for a
given polynomial degree, we iterate through the poly-
nomial degrees and optimize them. The initial condi-
tion for each polynomial degree is the optimized mesh
of the previous one. There are two main new contri-
butions in our p-continuation technique.

The first contribution is an early termination crite-
rion to stop the optimization of the initial polynomial
degrees. The proposed early termination criterion re-
duces the computational cost of the full optimization
process. To this end, we consider the mesh of the
current polynomial degree, φp, and let φp+1 be the
interpolation of φp using element-wise polynomials of
degree p+1. The early termination criterion is defined
using the boundary condition error of both meshes as

α ‖Tφp − gD(Tφp)‖ <
∥∥Tφp+1 − gD

(
Tφp+1)∥∥ .

(5)
That is, the optimization process of the current poly-
nomial degree is finished when the error of the bound-
ary condition is comparable to the error of the bound-
ary condition of the next polynomial degree. In this
work, we take α = 2.

The second contribution is the calculation of the initial
penalty parameter for the optimization of each poly-
nomial degree. A correct value of the penalty parame-
ter facilitates the solution of the linear and non-linear
problems and therefore, increases the robustness of the
optimization process. For a sufficiently large penalty
parameter, after optimizing the functional in Equa-
tion (4), the Lagrange multipliers of the associated

constraint are approximated as

λp ' −2µp
‖Tφp − gD(Tφp)‖

‖1‖∂M
I

. (6)

When the early termination criteria is satisfied, we in-
terpolate φp using polynomials of degree p + 1, and
compute the associated boundary condition of φp+1.
Assuming that the associated Lagrange multipliers ap-
proximated using Equation (6) are similar for both
polynomial degrees, we consider

λp = λp+1.

Therefore, we obtain that

µp+1 = µp
‖Tφp − gD(Tφp)‖

‖Tφp+1 − gD(Tφp+1)‖ . (7)

3.4 Parallel Pre-Conditioned Linear Solver

At each iteration of the non-linear solver we solve
the following linear system derived from Newton’s
method:

HEµ(u)δu = −∇Eµ(u)

Since in this work we are dealing with large-scale
meshes, we assemble and solve the linear system in
a parallel framework. We use the FEniCS software to
automatically generate the derivative expressions re-
quired to evaluate the Hessian and the gradient. Since
we solve this problem in parallel, we need to distribute
the mesh elements and degrees of freedom. To this
end, we use the ParMETIS library. The resulting dis-
tribution allows computing the element contributions
in a distributed manner. Specifically, we use the FEn-
iCS software, where each elemental contribution to the
residual and the residual Jacobian are computed in
parallel. To this end, non-blocking communication is
performed to communicate to send and receive the re-
quired data from adjacent processors. Then the contri-
butions of the inner processor elements are computed
and overlapped with the previously non-blocking com-
munication. Then, the contributions from the pro-
cessor boundary elements are computed. Finally, the
residual and the residual Jacobian are assembled.

We have used the linear solvers and pre-conditioners
implemented in the PETSc library [49]. We solve the
linear systems using a GMRES method restarted ev-
ery 20 iterations. To accelerate the convergence of the
linear solver, we consider two pre-conditioners. The
first one is a restricted additive Schwarz method with
one overlap level. The local problems are approxi-
mated using two iterations of a symmetric successive
over-relaxation method with ω = 1. The second pre-
conditioner is an algebraic multi-grid method in which
the coarsest level is solved using an LU decomposition.
The number of coarsening levels is automatically com-
puted by the PETSc implementation.

3.5 Algorithm Description

Algorithm 1 describes the proposed penalty method
with p-continuation technique for mesh curving. The
input of the algorithm is an initial linear meshMI , the
final polynomial degree, pmax, and the required toler-
ances for the boundary condition and the non-linear
problem, ε∗ and ω∗, respectively. In Lines 2–4, we
set the initial polynomial degree, and we initialize the
quadratic mesh, φ2, to the identity mapping. That
is, we introduce the additional nodes on the edges of
the mesh, and we keep the straight-edged elements.
The identity mapping is optimal with respect of the
mesh quality however, it does not satisfy the bound-
ary condition. The initial penalty parameter is set
to 10. In Line 5 we start the p-continuation loop, in
which we iterate through all the polynomial degrees.
Then, in Line 7, we start the penalty method for the
given polynomial degree. In Lines 8 and 9 we perform
the fixed-point iteration. First, we update the bound-
ary condition and then, we optimize the functional in
Equation 4 to compute the new approximation of the
optimal mesh. In Lines 10–16 we select the conver-
gence criterion according to the current polynomial
degree. If the convergence check passes and we are
optimizing the last polynomial degree, the algorithm
ends, Line 19. If the convergence check passes and we
are not in the last polynomial degree, we compute the
new penalty parameter, Line 21, according to Equa-
tion (7), and we perform the optimization of the next
polynomial degree. If the convergence check fails, Line
24, we increase the penalty parameter and tighten the
tolerances.

4. EXAMPLES

This section presents several examples that show the
capabilities of the presented high-order mesh curving
method. Specifically, we show two three-dimensional
weak scaling examples, and a large-scale example of a
complex geometry with boundary layer.

To generate the initial linear meshes, we have used
Pointwise [50]. The mesh curving solver has been im-
plemented in Python [51] using the FEniCS [52] and
the petsc4py [49] libraries. To project the boundary
high-order nodes we have used both the geode [53] and
the Open CASCADE [54] libraries interfaced with an
in-house python wrapper developed using swig [55].

The optimization process has been performed in
the MareNostrum4 super-computer located at the
Barcelona Supercomputing Center. It is composed of
3456 nodes, connected using an Intel Omni-Path net-
work. Each node contains two Intel Xeon Platinum
8160 CPU with 24 cores, each at 2.10 GHz, and 96
GB of RAM memory. To obtain the total energy con-
sumed by all tasks of the optimization job, we have

Algorithm 1
p-continuation penalty method for mesh curving.

Input: MI , pmax, ε∗, ω∗

Output: Mapping φp

1: function meshOptimization

. Variable initialization
2: p← 2
3: φp ← Id
4: µ← 10, m← 10, α← 2

. p-continuation loop
5: for p ∈ 2, . . . , pmax do
6: conv ← false

. Penalty method loop
7: while not conv do

. Fixed-point iteration
8: gpD ← gD(Tφp)
9: φp ← optimize(Eµ(φp,gpD), ω)

. Convergence criterion
10: if p = pmax then

. Convergence criterion for pmax

11: conv ← ‖φp − gpD‖ < ε∗ and∥∥∇Eµ(φp,gpD)
∥∥ < ω∗

12: else

. Early termination criterion
13: φp+1 ← interpolate(φp)
14: gp+1

D ← gD
(
Tφp+1

)
15: conv ←

α ‖Tφp − gpD‖ <
∥∥Tφp+1 − gp+1

D

∥∥
16: end if

. Check convergence
17: if conv then
18: if p = pmax then

. Algorithm has finished
19: return φp

20: else

. µ calculation for next q

21: µ← µ
‖φp−g

p
D‖

‖φp+1−g
p+1
D ‖

22: φp+1 ← φp

23: end if
24: else

. Not converged, increase penalty
and tighten tolerance

25: µ← mµ
26: ω ← max{ω/m,ω∗}
27: end if
28: end while
29: end for
30: end function

used the sacct command of the SLURM Workload
Manager. Note that only in case of exclusive job allo-
cation, this value reflects the real energy consumption.

The mesh visualization has been performed using Par-
aview 5.5.2 [56] in parallel in the MareNostrum4 super-
computer. We have used the high-order mesh visual-
ization implementation of Paraview that subdivides
each element in a given number of sub-elements. Note
that the mesh partition to perform the visualization
does not need to coincide with the mesh partition to
perform the optimization. In general, for visualization
purposes, less cores are needed since no global matri-
ces are assembled and no linear systems are solved.

We compute the elemental quality relative to the ini-
tial mesh as [23]

qeP =
1

ηeP
, where ηeP =

∫
eI

(Mφ)2 dΩ∫
eI

1 dΩ

1/2

.

The relative element quality takes values in the inter-
val [0, 1]. An ideal element has quality equal to one,
and an inverted or tangled element has a quality of
zero. In all the examples, we color the elements ac-
cording to 1 − qeP in logarithmic scale to check how
close is the element quality to one. Thus, lower values
denote higher quality elements.

In the examples, we compare the two pre-conditioners
presented in Section 3.4. To faithfully compare both
pre-conditioners, we solve the linear systems with a
relative tolerance of 10−9. Thus, in all the cases, the
evolution of the non-linear solver is not affected by the
selection of the pre-conditioner, since the solution of
the linear systems is numerically equal when different
pre-conditioners are used.

In the examples we compare the two pre-conditioners
presented in Section 3.4. To faithfully compare both
pre-conditioners, we solve the linear systems with a
relative tolerance of 10−9. Thus, in all the cases, the
evolution of the non-linear solver is not affected by
the selection of the pre-conditioner, since the solu-
tion of the linear systems is numerically equal when
different pre-conditioners are used. Although using
both pre-conditioners the optimal meshes are numer-
ically equivalent, the figures show the optimal high-
order meshes optimized using the additive Schwarz
pre-conditioner.

4.1 Weak Scaling: Isotropic Elements

In this example, we perform a weak scaling analysis
on the number of elements. We generate five isotropic
meshes increasing the number of elements and the used
cores in such a way that the number of elements per

core remains constant. The domain is a sphere of ra-
dius four with a spherical hole in the center of radius
one. The element sizes are chosen such that there are
around 1500 elements per cores, and we have used 480,
960, 1440, 1920 and 2400 cores. This leads to meshes
that are composed of 0.72 · 106, 1.44 · 106, 2.16 · 106,
2.88 · 106 and 3.60 · 106 elements of polynomial degree
four. Figures 1a to 1e show the five curved high-order
meshes generated for this example.

Figure 2 show the evolution of the constraint norm
during the iterations of the non-linear optimization for
the five meshes. At each non-linear iteration, we op-
timize the functional in Equation (4) and, if needed,
the penalty parameter is increased in order to enforce
the boundary condition. Dark blue circles denote the
initial iteration of each polynomial degree in the p-
continuation technique. The evolution of the con-
straint norm in all cases follows a similar pattern, even
though the boundary mesh is not the same. Thus, we
show that the proposed formulation presents a mesh
independent behavior at the non-linear level. Specif-
ically, the number of iterations to perform the whole
optimization process is the same in all the cases and
moreover, the number of non-linear iterations at each
polynomial degree is also the same. During the first
iterations of the quadratic mesh, the constraint norm
decreases slowly. Nevertheless, from iteration three
onwards, the constraint norm decreases geometrically
with the non-linear iterations. When the constraint
norm is of the same order as the constraint norm of
the next polynomial degree, the early-termination cri-
terion is activated. Thus, the norm of the boundary
condition is similar to the norm of the boundary condi-
tion of the next polynomial degree. Then, we compute
the new penalty parameter for the next polynomial de-
gree. Note that the constraint norm also decreases ge-
ometrically with the non-linear iterations. Therefore,
this shows that we have correctly selected the value of
the penalty parameter.

In Figure 3 we present the time to solve all the linear
problems, the total number of linear solver iterations,
the energy consumption, and the energy consumption
per core for the two pre-conditioners. We use the red,
green and blue colors to denote the quantities of in-
terest for the meshes of polynomial degree two, three
and four of the p-continuation technique. Using both
pre-conditioners, the time to curve the finer meshes is
larger than the time to curve the coarser meshes, even
when the number of elements per core is the same.
The number of linear iterations to curve the quadratic
mesh is significantly higher than the rest of the curv-
ing process, while the time spent on curving the initial
polynomial degrees is significantly lower than the rest
of the curving process.

While in the case of the additive Schwarz pre-

(a) (b)

(c) (d)

(e)

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

1− q

Figure 1: Optimized meshes of polynomial degree four using the proposed mesh curving solver, approximately
composed of: (a) 0.72 · 106 elements on 480 cores; (b) 1.44 · 106 elements on 960 cores; (c) 2.16 · 106 elements on 1440
cores; (d) 2.88 · 106 elements on 1920 cores; and (e) 3.60 · 106 elements on 2400 cores.

conditioner the number of iterations of the linear
solver increases, this is not the case when using the

multi-grid pre-conditioner. However, the cost of each
iteration is higher when using the multi-grid pre-

0 2 4 6 8
iteration

10-9
10-8
10-7
10-6
10-5
10-4
10-3

‖ T
(φ

k
)
−
g
k D
‖

(a)

0 2 4 6 8
iteration

10-9
10-8
10-7
10-6
10-5
10-4
10-3

‖ T
(φ

k
)
−
g
k D
‖

(b)

0 2 4 6 8
iteration

10-9
10-8
10-7
10-6
10-5
10-4

‖ T
(φ

k
)
−
g
k D
‖

(c)

0 2 4 6 8
iteration

10-10
10-9
10-8
10-7
10-6
10-5
10-4

‖ T
(φ

k
)
−
g
k D
‖

(d)

0 2 4 6 8
iteration

10-10
10-9
10-8
10-7
10-6
10-5
10-4

‖ T
(φ

k
)
−
g
k D
‖

(e)

Figure 2: Evolution of the norm of the constraint through the optimization process for the mesh optimized with
boundary layer stretching of: (a) 480 cores; (b) 960 cores; (c) 1440 cores; (d) 1920 cores; and (e) 2400 cores.

p= 2 p= 3 p= 4 optimization process

480 960 1440 1920 2400
cores

0
50

100
150
200
250
300
350
400

lin
ea

r s
ol

ve
r t

im
e (

s)

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

ef
fic

ien
cy

 re
cip

ro
ca

l

(a)

480 960 1440 1920 2400
cores

0
250
500
750

1000
1250
1500
1750

lin
ea

r s
ol

ve
r i

ter
ati

on
s

(b)

480 960 1440 1920 2400
cores

0

5

10

15

20

25

En
er

gy
 (M

J)

(c)

480 960 1440 1920 2400
cores

0

2

4

6

8

10

12

En
er

gy
 /

co
re

 (K
J)

(d)

480 960 1440 1920 2400
cores

0
100
200
300
400
500
600
700

lin
ea

r s
ol

ve
r t

im
e (

s)

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

ef
fic

ien
cy

 re
cip

ro
ca

l

(e)

480 960 1440 1920 2400
cores

0
20
40
60
80

100
120
140
160

lin
ea

r s
ol

ve
r i

ter
ati

on
s

(f)

480 960 1440 1920 2400
cores

0.0
2.5
5.0
7.5

10.0
12.5
15.0
17.5
20.0

En
er

gy
 (M

J)

(g)

480 960 1440 1920 2400
cores

0
2
4
6
8

10
12

En
er

gy
 /

co
re

 (K
J)

(h)

Figure 3: In rows, different pre-conditioners: (a), (b) (c) and (d) additive Schwarz; (e), (f), (g) and (h) multi-grid.
In columns, in terms of the number of cores: (a) and (d) linear solver time; (b) and (e) linear solver iterations; (c)
and (f) total energy consumption; and (d) and (h) energy consumption per core.

conditioner, and so is the total time of solving the
linear systems. The main reason is that the multi-
grid pre-conditioner uses more memory per core as
the mesh becomes finer. Thus, using the multi-grid
pre-conditioner we were not able to curve the last two
meshes because of the high amount of used memory.
Specifically, when curving the mesh with 1920 cores,
we only obtained the cubic mesh, and when curving
the mesh using 2400 cores, we reached the quadratic
mesh.

Using both pre-conditioners, the total amount of con-
sumed energy increases as the number of cores in-
crease. This is expected because when curving finer
meshes we are using more cores during more time. In
addition, the memory consumption per core increases
as the number of elements in the meshes increases.
That is, when curving finer meshes, each core con-
sumes more energy than when curving coarser meshes.
Since multi-grid uses more computational resources
than the additive Schwarz pre-conditioner, the multi-
grid pre-conditioner leads to higher energy demands
than the additive Schwarz pre-conditioner.

4.2 Weak Scaling: Boundary Layer
Stretching

In this example, we perform a weak scaling analysis
in terms of the stretching of the boundary layer and
the number of elements. The domain is a sphere of ra-
dius four with a spherical hole in the center of radius
one. We generate five meshes increasing the stretching
and the number of layers of a boundary layer gener-
ated around the inner sphere. In all the meshes, the
boundary mesh is the same. The growth factor of all
the boundary layers is 100.1 ' 1.259, that ensures that
every ten layers, the width of the layer is multiplied by
ten. The maximum stretching of each mesh is 1 : 101,
1 : 102, 1 : 103, 1 : 104, 1 : 105. The number of lay-
ers in the boundary layer has been chosen to obtain
roughly 1500 elements per processor, and we have used
96, 192, 288, 384 and 480 cores. Specifically, the num-
ber of layers of each mesh is 10, 23, 37, 47 and 57.
This leads to meshes that are composed of 135 · 103,
291 ·103, 460 ·103, 581 ·103 and 702 ·103 elements. Fig-
ures 4a to 4e show the five curved high-order meshes
of this example.

Figure 5 show the evolution of the constraint norm
over the non-linear iterations for the five cases. In this
example, the boundary mesh is the same for all the
cases and therefore, the evolution for the five meshes
is practically the same. That is, the proposed solver
exhibits mesh independence at the non-linear level.
Moreover, in this example, the constraint norm de-
creases geometrically with the non-linear iterations.
This is especially important during the first iterations
of each polynomial degree in the p-continuation tech-

nique. The main reason is that we compute a correct
value of the penalty parameter. Thus, the non-linear
solver can perform the continuation of the solution
when increasing the polynomial degree.

Figure 6 shows the time to solve the linear problems,
the total number of linear solver iterations, the energy
consumption, and the energy consumption per core for
the two pre-conditioners. In both cases, the time to
solve the linear systems becomes larger as the bound-
ary layer stretching increases. The problem becomes
more difficult to solve because the high-stretched ele-
ments increase the condition number of the linear sys-
tems. That is, the number of linear solver iterations in-
creases with the boundary layer stretching. Similarly
as in the previous example, the mesh curving process
spends most of the linear solve iterations in the curv-
ing of the quadratic and cubic meshes. Nevertheless,
when using the additive Schwarz pre-conditioner, the
curving of the quadratic and cubic meshes is a small
fraction of the total time. While the multi-grid pre-
conditioner uses fewer linear solver iterations than the
additive Schwarz one, the time to solve the linear sys-
tems is one order of magnitude lower when using the
additive Schwarz pre-conditioner.

As we increase the stretching of the boundary layer,
the energy consumption increases with both pre-
conditioners. Nevertheless, the energy consumption
when curving the meshes using the multi-grid pre-
conditioner is roughly twenty times larger than when
using the additive Schwarz one. Moreover, the energy
consumption per core also increases when we increase
the element stretching. The main reason is that the
cores are computing during more time because the lin-
ear solver needs more iterations to converge. In this
example, as expected, we show with numerical evi-
dence that the problem of high-order mesh curving
becomes more difficult as the elements become more
stretched.

4.3 p-continuation Influence: Complex
Geometry with Boundary Layer

We apply the proposed mesh curving solver to curve
a large-scale mesh generated for a falcon aircraft, and
we show the advantages of the proposed p-continuation
technique. The initial linear mesh contains 3.91 · 106

elements, and a boundary layer around the aircraft
with a maximum stretching of 1 : 400. We perform
the high-order mesh curving process with and without
using the proposed p-continuation technique. Specif-
ically, we apply the proposed solver to curve a mesh
of polynomial degree four that contains 42 · 106 nodes
using 2400 cores. Figure 9 shows the decomposition
that we have used to perform the parallel mesh curv-
ing optimization process. We obtain the same solution
whether we apply the proposed p-continuation tech-

(a) (b)

(c) (d)

(e)

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

1− q

Figure 4: Optimized meshes using the proposed mesh curving solver with boundary layer stretching of: (a) 1 : 1 ·101;
(b) 1 : 1 · 102; (c) 1 : 1 · 103; (d) 1 : 1 · 104; and (e) 1 : 1 · 105.

nique or not. Figure 7 shows two global views of the
curved high-order mesh, while Figures 8a and 8b show
detailed views of the mesh at the nose and at the wing-

fuselage structure. Note that just the first layers close
to the aircraft are curved and that the majority of the
mesh contains straight-edged elements.

0 2 4 6 8 10
iteration

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

‖ T
(φ

k
)
−
g
k D
‖

(a)

0 2 4 6 8 10
iteration

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

‖ T
(φ

k
)
−
g
k D
‖

(b)

0 2 4 6 8 10
iteration

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

‖ T
(φ

k
)
−
g
k D
‖

(c)

0 2 4 6 8 10
iteration

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

‖ T
(φ

k
)
−
g
k D
‖

(d)

0 2 4 6 8 10
iteration

10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

‖ T
(φ

k
)
−
g
k D
‖

(e)

Figure 5: Evolution of the norm of the constraint through the optimization process for the mesh optimized with
boundary layer stretching of: (a) 1 : 101; (b) 1 : 102; (c) 1 : 103; (d) 1 : 104; and (e) 1 : 105.

p= 2 p= 3 p= 4 optimization process

96 192 288 384 480
cores

0

1000

2000

3000

4000

lin
ea

r s
ol

ve
r t

im
e (

s)

0

5

10

15

20

25

ef
fic

ien
cy

 re
cip

ro
ca

l

(a)

96 192 288 384 480
cores

0

5000

10000

15000

20000

lin
ea

r s
ol

ve
r i

ter
ati

on
s

(b)

96 192 288 384 480
cores

0
5

10
15
20
25
30
35
40

En
er

gy
 (M

J)

(c)

96 192 288 384 480
cores

0
10
20
30
40
50
60
70
80

En
er

gy
 /

co
re

 (K
J)

(d)

96 192 288 384 480
cores

0
5000

10000
15000
20000
25000
30000
35000
40000

lin
ea

r s
ol

ve
r t

im
e (

s)

0
20
40
60
80
100
120
140

ef
fic

ien
cy

 re
cip

ro
ca

l

(e)

96 192 288 384 480
cores

0
2000
4000
6000
8000

10000
12000
14000
16000

lin
ea

r s
ol

ve
r i

ter
ati

on
s

(f)

96 192 288 384 480
cores

0
100
200
300
400
500
600
700
800

En
er

gy
 (M

J)

(g)

96 192 288 384 480
cores

0
250
500
750

1000
1250
1500
1750

En
er

gy
 /

co
re

 (K
J)

(h)

Figure 6: In rows, different pre-conditioners: (a), (b) (c) and (d) additive Schwarz; (e), (f), (g) and (h) multi-grid.
In columns, (a) and (d) linear solver time; (b) and (e) linear solver iterations; (c) and (f) total energy consumption;
and (d) and (h) energy consumption per core.

(a)

(b)

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

1− q

Figure 7: Optimized mesh of polynomial degree four of a falcon aircraft using the proposed mesh curving solver:
(a) slice along the x axis; and (b) slice along the y axis.

Figures 10a and 10b show the evolution of the con-
straint norm through the non-linear iterations of the
penalty method with and without using the proposed
p-continuation technique, respectively. The dark blue
circles denote the initial iteration of each polynomial
degree. When using the p-continuation technique, the
whole process takes nine iterations to converge, while
the case of directly optimizing the mesh of polyno-

mial degree four takes 7 iterations. In both cases, in
the last iterations of each polynomial degree, the con-
straint norm decreases geometrically with the number
of iterations. Note that when using the p-continuation
technique the estimation of the penalty parameter en-
sures that in the first iterations of each polynomial
degree the constraint norm also decreases geometri-
cally.

(a) (b)

10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

1− q

Figure 8: Detailed view of the optimized mesh of polynomial degree four of a falcon aircraft using the proposed
mesh curving solver: (a) at nose; and (b) at the wing-fuselage.

Figure 9: Parallel decomposition of the high-order
mesh for a Falcon aircraft, where each color denotes a
different processor.

Figure 11 shows the total time to solve the linear
problems, the number of linear solver iterations, and
the energy consumption for both cases. Note that
the p-continuation technique reduces the time to solve
the linear systems fourfold. The main reason is that
we reduce in half the number of linear solver itera-
tions and that only a fraction of the linear iterations
are performed in the mesh of polynomial degree four.
Since meshes of lower polynomial degree lead less un-
knowns and to matrices with fewer non-zero entries,
each iteration of the linear solver is performed faster.
For this reason, we have reduced the computational
time and memory requirements with the proposed p-

continuation technique and therefore, the energy con-
sumption is reduced five times.

Table 1 presents the time breakdown of the opti-
mization process with and without the proposed p-
continuation technique. In both cases, the time to
solve linear systems is the major contribution of the
total time. The assembly time is lower when using the
p-continuation technique because the elemental ma-
trices are smaller. The rest of the time contains the
mesh reading and writing, the nodal projection, and
the control flow of the algorithm. In both cases, this
time is similar. Thus, the main advantage of the pro-
posed p-continuation technique is that we reduce the
time to construct the linear systems and to solve them.

5. CONCLUDING REMARKS

5.1 Summary

We have presented a mesh curving solver to generate
curved high-order meshes. Specifically, we have ex-
tended our high-order meshing solver to take advan-
tage of a distributed parallel environment. The pro-
posed formulation shows mesh independence at the
non-linear level. Nevertheless, the obtained linear
systems do not show this behavior. As the number
of elements increase and the elements become more
stretched, the linear systems are harder to solve be-
cause the condition number of the matrices increases.
It is especially important to highlight the difficulty

0 2 4 6 8
iteration

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

‖ T
(φ

k
)
−
g
k D
‖

(a)

0 1 2 3 4 5 6 7
iteration

10-9

10-8

10-7

10-6

10-5

10-4

10-3

‖ T
(φ

k
)
−
g
k D
‖

(b)

Figure 10: Evolution of the norm of the constraint through the high-order mesh curving process of a falcon aircraft.

p= 2 p= 3 p= 4 optimization process

p0 = 2 p0 = 40

1000

2000

3000

4000

lin
ea

r s
ol

ve
r t

im
e (

s)

(a)

p0 = 2 p0 = 40
1000
2000
3000
4000
5000
6000
7000

lin
ea

r s
ol

ve
r i

ter
ati

on
s

(b)

p0 = 2 p0 = 40
25
50
75

100
125
150
175

En
er

gy
 (M

J)

(c)

p0 = 2 p0 = 40
10
20
30
40
50
60
70
80

En
er

gy
 /

co
re

 (K
J)

(d)

Figure 11: Curved high-order mesh generation for a falcon aircraft: (a) linear solver time; (b) linear solver iterations;
and (c) energy consumption

Table 1: Time breakdown in seconds for the meshes generated of the Falcon aircraft

Case Total time (s) Assembly time (s) Linear solver time (s) other time (s)

p0 = 2 1296 289.5 975.2 31.19
p0 = 4 4921 355.7 4531 34.48

increase when the elements become more stretched.
Thus, the main difficulty of the mesh curving process
is solving the linear systems, especially when stretched
elements appear in the mesh.

In this work, we have analyzed two pre-conditioners
in order to compare their performance in terms of the
number of linear solver iterations, the time to solve
the linear systems, and the energy consumption of the
mesh curving process. The first pre-conditioner is an
additive Schwarz method with one level of overlap in
which the local problem is approximated using two
iterations of a symmetric successive over-relaxation
method. The second pre-conditioner is an algebraic
multi-grid pre-conditioner in which the coarsest prob-
lem is solved using an LU decomposition. The PETSc

implementation of the algebraic multi-grid method au-
tomatically computes the optimal number of levels to
solve the linear problem.

The additive Schwarz pre-conditioner leads to a higher
number of linear iterations than the algebraic multi-
grid. Nevertheless, each iteration of the algebraic
multi-grid pre-conditioner takes more time than one
iteration of the additive Schwarz one. Thus, the total
time to solve the linear systems is lower when using the
additive Schwarz pre-conditioner. Moreover, the alge-
braic multi-grid technique has to store the different
coarsening levels and therefore it uses more memory
than the additive Schwarz. Specifically, as the mesh
becomes finer and the number of cores increases, the
required memory per core increases. Moreover, even

when keeping the same number of elements per core,
the memory requirements make the algebraic multi-
grid method not usable for meshes with a high number
of elements. Therefore, since the algebraic multi-grid
method requires more memory and takes more time
than the additive Schwarz method, the energy con-
sumption is higher. Specifically, the economic cost of
generating a curved high-order mesh is lower when us-
ing the additive Schwarz pre-conditioner.

We have proposed a p-continuation technique to re-
duce the computational resources of the mesh curving
solver while increasing its robustness. The main idea is
to use the solution of a polynomial degree as a start-
ing position for the next polynomial degree. There-
fore, the p-continuation technique can be interpreted
as a methodology to compute an initial position of the
mesh for the last polynomial degree. Since the initial
position of the nodes for the last polynomial degree are
close to the optimal position, the computational time
to optimize the mesh is reduced and the robustness of
the optimization process is increased.

We have devised two key ideas to define the p-
continuation technique. The first one is an early-
termination criterion to finalize the mesh curving of
the initial polynomial degrees. Therefore, we solve less
linear problems and we improve the computational ef-
ficiency. The second idea is to compute an estimation
of the penalty parameter for the initial iteration of
each polynomial degree. In our experience, the selec-
tion of the penalty parameter is crucial for the effi-
ciency and convergence of the mesh curving process.
On the one hand, if the penalty parameter is too low,
the boundary condition is not enforced enough, and
the mesh curving process needs additional iterations of
the penalty method. On the other hand, if the penalty
parameter is too high, the condition number of the lin-
ear systems increase and therefore, the linear systems
become harder to solve. Thus, the mesh curving pro-
cess may not finalize because the linear problem could
not be solved.

We have shown that the p-continuation technique does
not spend much time curving the initial polynomial de-
grees, although most of the iterations are performed
in the initial polynomial degrees. Therefore, we accel-
erate the mesh curving solver because the linear solver
iterations of lower polynomial degree are faster since
the number of unknowns and the number of non-null
entries in the matrix are lower. Moreover, in the pre-
sented examples, we have shown that the number of
linear solver iterations is also reduced. Therefore, the
necessary energy to generate a curved high-order mesh
is reduced because we are using the computational re-
sources during less time, and the process is less mem-
ory intensive.

5.2 Discussion

In our solver, we have tested additional pre-
conditioners. For instance, when using an additive
Schwarz pre-conditioner without overlap levels, the
linear systems do not converge. The main reason is
that it takes more linear solver iterations to transfer
the information of one processor to the others. This is
solved by increasing the overlap levels of the additive
Schwarz method. Additionally, the local problem can
be approximated using an incomplete LU factorization
without fill-in levels, ILU(0). In this case, the linear
solver does not converge because the local problem is
not well approximated. Although we can increase the
fill-in levels, this would lead to higher memory require-
ments. Finally, to reduce the memory requirements of
the algebraic multi-grid it is possible to limit the num-
ber of coarsening levels to reduce the memory require-
ments. Nevertheless, since the coarsest level solver is a
direct decomposition solver, its memory requirements
increase. Therefore it is needed to find a balance be-
tween the number of coarsening levels and the memory
requirements of the coarsest level solver.

In this work, we are performing a full optimization
process of the whole mesh. Although this approach
may seem expensive, we ensure that the final curved
high-order mesh is optimal in all the elements. This
is an important point because non-optimized elements
may introduce spurious oscillations in the solution of a
simulation process. Nevertheless, there are implemen-
tations that only optimize the worst quality elements.
Specifically, they optimize the elements with quality
lower than a given threshold, and some additional ele-
ments around to increase the feasible locations of the
high-order nodes. Therefore, these methods require
to select the threshold value in such a manner that
the optimized mesh is good enough for the simula-
tion, and how many elements to additionally optimize
in order to obtain a feasible solution. By optimizing
the whole mesh, we ensure the optimality of all the
elements without additional parameters.

The optimization of the whole mesh is especially im-
portant in cases with a highly-stretched boundary
layer. In these cases, it is of major importance to ob-
tain optimal elements in the boundary layer and there-
fore the whole boundary layer should be optimized.
Since the number of elements in the boundary layer
can be a significant fraction of the total elements, it is
not clear the reduction in computational resources of
optimizing only a fraction of the elements.

Although the existent literature comparing local and
global mesh optimization does not deal with piece-
wise polynomial curved meshes and highly stretched
elements, it suggests that for mesh curving a specific-
purpose global optimization method might be pre-
ferred. That is, existent literature in local and global

optimization methods for linear meshes shares a com-
mon conclusion, when highly optimized and accurate
meshes are required, especially in isotropic meshes fea-
turing high gradations of the element size, a specific-
purpose global feasible Newton method outperforms
local optimization methods. This setting also corre-
sponds to the general mesh curving problem where
we need to exploit the quadratic convergence of New-
ton’s method since we want high-precision to both ap-
proximate the curved geometries and deal with highly
stretched elements. Furthermore, we want to apply
our mesh curving method to meshes featuring smaller
size close the objects immersed in the fluid stream and
bigger size in the far-field, and thus, we need to deal
with high gradations of the element size. Nevertheless,
in the near future, it could be interesting to compare
our global parallel method featuring global quadratic
convergence rate with a local parallel method featur-
ing local quadratic convergence rate.

Note that we have only studied weak scaling results,
but not strong scaling results, since we are interested
in proposing a global method to generate large curved
meshes in parallel. In our formulation, we need to
store the Hessian pre-conditioner in a distributed fash-
ion, and thus, these memory requirements determine
the number of computing nodes. This need is so since
each computing node has a fixed amount of main mem-
ory to deal with a maximum number of non-zero en-
tries of the Hessian matrix, determined by the polyno-
mial degree and the number of elements per processor.
We prefer to use all the memory available in each com-
puting node and thus, use a small number of processors
for coarse meshes and a larger number of processors
for fine meshes. This setting demands a weak scaling
study, where instead of fixing the problem size and us-
ing more computing resources, we increase both the
problem size, number of elements to curve, and the
number of processors.

The process of generating a curved high-order mesh
given a CAD model is decomposed in three stages.
The first stage is the geometry healing and defeatur-
ing of a given CAD model. The second stage is the
generation of an initial linear mesh with elements of
the desired shape and size. Finally, the third stage is
the actual high-order mesh curving by optimizing the
mesh distortion. In our particular case, we spend most
of the time in the first two stages. Specifically, the first
two stages require the work of trained personnel and
specialized software.

Usually, if the initial linear mesh is good enough, the
optimization process is performed without incident. In
our experience, the high-order mesh needs enough res-
olution to represent the underlying CAD geometry. In
addition, to avoid invalid elements, there should not
be any elements with all the nodes on a smooth sur-

face. Such elements have two high-order triangles that
approximate the surface. Since the surface is smooth,
this would lead to null Jacobians in the common edge.

5.3 Conclusion

The proposed p-continuation approach reduces four
times (eight times) the total time (energy) used to
curve a whole boundary layer mesh using 2400 cores.
The p-continuation accelerates a Newton-GMRES
penalty solver equipped with the chosen parallel pre-
conditioner, a restricted additive Schwarz domain de-
composition with one level of overlap and local prob-
lems approximated with two iterations of symmetric
successive over-relaxation.

ACKNOWLEDGMENTS

This project has received funding from the European
Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme un-
der grant agreement No 715546. This work has also
received funding from the Generalitat de Catalunya
under grant number 2017 SGR 1731. The work of
Xevi Roca has been partially supported by the Span-
ish Ministerio de Economı́a y Competitividad under
the personal grant agreement RYC-2015-01633.

References

[1] Szabó B., Babuška I. Finite Element Analysis.
John Wiley & Sons New York, 1991

[2] Schwab C. p-and hp-finite element methods: The-
ory and applications in solid and fluid mechanics.
Clarendon Press Oxford, 1998

[3] Deville M., Fischer P., Mund E. High-order meth-
ods for incompressible fluid flow, vol. 9. Cam-
bridge University Press, 2002

[4] Hesthaven J., Warburton T. Nodal Discontin-
uous Galerkin Methods: Algorithms, Analysis,
and Applications. Texts in Applied Mathemat-
ics. Springer, 2007

[5] Karniadakis G., Sherwin S. Spectral/hp element
methods for computational fluid dynamics. Ox-
ford University Press, 2013

[6] Vos P.E., Sherwin S., Kirby R. “From h to p effi-
ciently: implementing finite and spectral/hp ele-
ment methods to achieve optimal performance for
low- and high-order discretisations.” J. Comput.
Phys., vol. 229, no. 13, 5161–5181, 2010

[7] Cantwell C., Sherwin S., Kirby R., Kelly P.
“From h to p efficiently: strategy selection for op-
erator evaluation on hexahedral and tetrahedral

elements.” Comput. Fluids, vol. 43, no. 1, 23–28,
2011

[8] Cantwell C., Sherwin S., Kirby R., Kelly P.
“From h to p efficiently: selecting the optimal
spectral/hp discretisation in three dimensions.”
Math. Model. Nat. Phenom., vol. 6, no. 3, 84–96,
2011

[9] Löhner R. “Error and work estimates for high-
order elements.” Int. J. Numer. Meth. Fluids,
vol. 67, no. 12, 2184–2188, 2011

[10] Yano M., et al. An optimization framework
for adaptive higher-order discretizations of par-
tial differential equations on anisotropic simplex
meshes. Ph.D. thesis, Massachusetts Institute of
Technology, 2012

[11] Kirby R., Sherwin S., Cockburn B. “To CG or
to HDG: a comparative study.” J. Sci. Comput.,
vol. 51, no. 1, 183–212, 2012

[12] Huerta A., Roca X., Angeloski A., Peraire J.
“Are High-order and Hybridizable Discontinuous
Galerkin methods competitive?” Oberwolfach
Rep., vol. 9, no. 1, 485 – 487, 2012

[13] Löhner R. “Improved error and work estimates
for high-order elements.” Int. J. Numer. Meth.
Fluids, vol. 72, 1207–1218, 2013

[14] Wang Z., Fidkowski K., Abgrall R., Bassi F.,
Caraeni D., Cary A., Deconinck H., Hartmann
R., Hillewaert K., Huynh H., et al. “High-order
CFD methods: current status and perspective.”
Int. J. Numer. Meth. Fluids, vol. 72, no. 8, 811–
845, 2013

[15] Huerta A., Angeloski A., Roca X., Peraire J. “Ef-
ficiency of high-order elements for continuous and
discontinuous Galerkin methods.” Int. J. Numer.
Meth. Eng., vol. 96, 529–560, 2013

[16] Dey S., Shephard M., Flaherty J. “Geometry rep-
resentation issues associated with p-version finite
element computations.” Comput. Meth. Appl. M.,
vol. 150, no. 1–4, 39–55, 1997

[17] Dey S., O’Bara R., Shephard M.S. “Curvilinear
mesh generation in 3D.” Comput. Aided Design,
vol. 33, 199–209, 2001

[18] Luo X., Shephard M.S., Remacle J.F., O’Bara
R., Beall M., Szabó B., Actis R. “P-version
mesh generation issues.” Proc. 11th Int. Meshing
Roundtable, pp. 343–354. Springer Berlin Heidel-
berg, 2002

[19] Luo X., Shephard M.S., O’Bara R., Nastasia R.,
Beall M. “Automatic p-version mesh generation
for curved domains.” Eng. Comput., vol. 20, no. 3,
273–285, 2004

[20] Shephard M.S., Flaherty J.E., Jansen K., Li X.,
Luo X., Chevaugeon N., Remacle J.F., Beall M.,
O’Bara R. “Adaptive mesh generation for curved
domains.” Appl. Numer. Math., vol. 52, no. 2-3,
251–271, 2005

[21] Persson P.O., Peraire J. “Curved Mesh Genera-
tion and Mesh Refinement using Lagrangian Solid
Mechanics.” Proc. 47th AIAA. 2009

[22] Moxey D., Green M., Sherwin S., Peiró J. “An
isoparametric approach to high-order curvilin-
ear boundary-layer meshing.” Computer Methods
in Applied Mechanics and Engineering, vol. 283,
no. 0, 636 – 650, 2015

[23] Gargallo-Peiró A., Roca X., Peraire J., Sar-
rate J. “Optimization of a regularized distor-
tion measure to generate curved high-order un-
structured tetrahedral meshes.” International
Journal for Numerical Methods in Engineer-
ing, vol. 103, no. 5, 342–363, 2015. URL
http://dx.doi.org/10.1002/nme.4888

[24] Moxey D., Ekelschot D., Keskin Ü., Sherwin S.,
Peiró J. “High-order curvilinear meshing using a
thermo-elastic analogy.” Computer-Aided Design,
vol. 72, 130–139, 2016

[25] Fortunato M., Persson P. “High-order unstruc-
tured curved mesh generation using the Winslow
equations.” Journal of Computational Physics,
vol. 307, 1–14, 2016

[26] Eichstädt J., Green M., Turner M., Peiró J.,
Moxey D. “Accelerating high-order mesh opti-
misation with an architecture-independent pro-
gramming model.” Computer Physics Communi-
cations, vol. 229, 36–53, 2018

[27] Sherwin S., Peiró J. “Mesh generation in curvi-
linear domains using high-order elements.” Int.
J. Numer. Meth. Eng., vol. 53, no. 1, 207–223,
2002

[28] Xie Z., Sevilla R., Hassan O., Morgan K. “The
generation of arbitrary order curved meshes for
3D finite element analysis.” Comput. Mech.,
vol. 51, 361–374, 2012

[29] Poya R., Sevilla R., Gil A.J. “A unified approach
for a posteriori high-order curved mesh genera-
tion using solid mechanics.” Computational Me-
chanics, vol. 58, no. 3, 457–490, 2016

[30] Sevilla R., Rees L., Hassan O. “The generation of
triangular meshes for NURBS-enhanced FEM.”
International Journal for Numerical Methods in
Engineering, vol. 108, no. 8, 941–968, 2016

[31] Toulorge T., Geuzaine C., Remacle J.F., Lam-
brechts J. “Robust untangling of curvilinear
meshes.” J. Comput. Phys., vol. 254, 8 – 26, 2013

[32] Karman S.L., Erwin J.T., Glasby R.S., Stefanski
D. “High-Order Mesh Curving Using WCN Mesh
Optimization.” 46th AIAA Fluid Dynamics Con-
ference, p. 3178. 2016

[33] Stees M., Shontz S.M. “A high-order log barrier-
based mesh generation and warping method.”
Procedia Engineering, vol. 203, 180–192, 2017

[34] Panitanarak T., Shontz S.M. “A parallel log
barrier-based mesh warping algorithm for dis-
tributed memory machines.” Engineering with
Computers, vol. 34, no. 1, 59–76, 2018

[35] Ruiz-Gironés E., Roca X. “Imposing boundary
conditions to match a CAD virtual geometry for
the mesh curving problem.” Proceedings of the
27th International Meshing Roundtable, pp. 343–
361. Springer, 2018

[36] Staten M.L., Owen S.J., Shontz S.M., Salinger
A.G., Coffey T.S. “A comparison of mesh
morphing methods for 3D shape optimization.”
Proceedings of the 20th International Meshing
Roundtable, pp. 293–311. Springer, 2011

[37] Ruiz-Gironés E., Sarrate J., Roca X. “Genera-
tion of Curved High-order Meshes with Optimal
Quality and Geometric Accuracy.” Procedia En-
gineering, vol. 163, 315–327, 2016

[38] Toulorge T., Lambrechts J., Remacle J. “Op-
timizing the geometrical accuracy of curvilinear
meshes.” Journal of Computational Physics, 2016

[39] Ruiz-Gironés E., Gargallo-Peiró A., Sarrate J.,
Roca X. “Automatically imposing incremental
boundary displacements for valid mesh morphing
and curving.” Computer-Aided Design, 2019

[40] Dobrev V., Knupp P., Kolev T., Mittal K., Tomov
V. “The Target-Matrix Optimization Paradigm
for High-Order Meshes.” SIAM Journal on Sci-
entific Computing, vol. 41, no. 1, B50–B68, 2019

[41] Garanzha V., Kudryavtseva L. “Hyperelastic
springback technique for construction of pris-
matic mesh layers.” Procedia engineering, vol.
203, 401–413, 2017

[42] Karman S. “Curving for Viscous Meshes.”
Proceedings of the 27th International Meshing
Roundtable, pp. 303–325. Springer, 2018

[43] Sastry S.P., Shontz S.M. “A parallel log-barrier
method for mesh quality improvement and un-
tangling.” Engineering with Computers, vol. 30,
no. 4, 503–515, 2014

[44] Beńıtez D., Escobar J., Montenegro R.,
Rodŕıguez E. “Parallel Performance Model
for Vertex Repositioning Algorithms and Appli-
cation to Mesh Partitioning.” Proc. 27th Int.
Meshing Roundtable, 2018

[45] Ruiz-Gironés E., Roca X., Sarrate J. “High-
order mesh curving by distortion minimization
with boundary nodes free to slide on a 3D CAD
representation.” Computer-Aided Design, vol. 72,
52–64, 2016

[46] Gargallo-Peiró A., Roca X., Peraire J., Sarrate J.
“Distortion and quality measures for validating
and generating high-order tetrahedral meshes.”
Engineering with Computers, vol. 31, no. 3, 423–
437, 2015

[47] Knupp P.M. “Algebraic mesh quality metrics.”
SIAM J. Numer. Anal., vol. 23, no. 1, 193–218,
2001

[48] Nocedal J., Wright S. Numerical optimization.
Springer Verlag, 1999

[49] petsc4py. “PETSc for Python.”, 2018. URL
https://bitbucket.org/petsc/petsc4py

[50] Pointwise Inc. “Mesh Generation Soft-
ware for CFD — Pointwise, Inc.”
http://www.pointwise.com, 2018

[51] Python Software Foundation. “Python.”
http://www.python.org, 2018

[52] Alnæs M.S., Blechta J., Hake J., Johansson A.,
Kehlet B., Logg A., Richardson C., Ring J.,
Rognes M.E., Wells G.N. “The FEniCS Project
Version 1.5.” Archive of Numerical Software,
vol. 3, no. 100, 2015

[53] Geode. “Project Geode: Geometry for Simula-
tion.” http://www.pointwise.com/geode/, 2018

[54] CASCADE O. “Open CASCADE Technol-
ogy, 3D modeling and numerical simulation.”
www.opencascade.org, 2012

[55] swig. “Simplified Wrapper and Interface Genera-
tor.”, 2018. URL https://swig.org

[56] Ahrens J., Geveci B., Law C. “Paraview: An
end-user tool for large data visualization.” The
visualization handbook, vol. 717, 2005

